Molecular adaptation and salt stress response of Halobacterium salinarum cells revealed by neutron spectroscopy

Halobacterium salinarum is an extreme halophile archaeon with an absolute requirement for a multimolar salt environment. It accumulates molar concentrations of KCl in the cytosol to counterbalance the external osmotic pressure imposed by the molar NaCl. As a consequence, cytosolic proteins are permanently exposed to low water activity and highly ionic conditions. In non-adapted systems, such conditions would promote protein aggregation, precipitation, and denaturation. In contrast, in vitro studies showed that proteins from extreme halophilic cells are themselves obligate halophiles. In this paper, adaptation via dynamics to low-salt stress in H. salinarum cells was measured by neutron scattering experiments coupled with microbiological characterization. The molecular dynamic properties of a proteome represent a good indicator for environmental adaptation and the neutron/microbiology approach has been shown to be well tailored to characterize these modifications. In their natural setting, halophilic organisms often have to face important variations in environmental salt concentration. The results showed deleterious effects already occur in the H. salinarum proteome, even when the external salt concentration is still relatively high, suggesting the onset of survival mechanisms quite early when the environmental salt concentration decreases.
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
Instant access to the full article PDF.
Rent this article via DeepDyve
Similar content being viewed by others

Surviving salt fluctuations: stress and recovery in Halobacterium salinarum, an extreme halophilic Archaeon
Article Open access 24 February 2020

Experimental study of proteome halophilicity using nanoDSF: a proof of concept
Article 07 December 2021
Survival and Adaptation of the Thermophilic Species Geobacillus thermantarcticus in Simulated Spatial Conditions
Article 08 June 2017
References
- Capes MD, DasSarma P, DasSarma S (2012) The core and unique proteins of haloarchaea BMC. Genomics 13:39. doi:10.1186/1471-2164-13-39PubMed CentralCASPubMedGoogle Scholar
- Chamieh H, Marty V, Guetta D, Perollier A, Franzetti B (2012) Stress regulation of the PAN-proteasome system in the extreme halophilic archaeon Halobacterium. Extremophiles 16:215–225. doi:10.1007/s00792-011-0421-0ArticleCASPubMedGoogle Scholar
- Colletier JP, Aleksandrov A, Coquelle N, Mraihi S, Mendoza-Barbera E, Field M, Madern D (2012) Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions. Mol Biol Evol 29:1683–1694. doi:10.1093/molbev/mss015ArticleCASPubMedGoogle Scholar
- Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374:547–562 ArticleCASPubMedGoogle Scholar
- Coquelle N, Talon R, Juers DH, Girard E, Kahn R, Madern D (2010) Gradual adaptive changes of a protein facing high salt concentrations. J Mol Biol 404:493–505 ArticleCASPubMedGoogle Scholar
- Costenaro L, Zaccai G, Ebel C (2002) Link between protein-solvent and weak protein-protein interactions gives insight into halophilic adaptation. Biochemistry 41:13245–13252 ArticleCASPubMedGoogle Scholar
- Deole R, Challacombe J, Raiford DW, Hoff WD (2013) An extremely halophilic proteobacterium combines a highly acidic proteome with a low cytoplasmic potassium content. J Biol Chem 288:581–588. doi:10.1074/jbc.M112.420505ArticlePubMed CentralCASPubMedGoogle Scholar
- Ebel C, Costenaro L, Pascu M, Faou P, Kernel B, Proust-De Martin F, Zaccai G (2002) Solvent interactions of halophilic malate dehydrogenase. Biochemistry 41:13234–13244 ArticleCASPubMedGoogle Scholar
- Franzetti B, Schoehn G, Ebel C, Gagnon J, Ruigrok RW, Zaccai G (2001) Characterization of a novel complex from halophilic archaebacteria, which displays chaperone-like activities in vitro. J Biol Chem 276:29906–29914 ArticleCASPubMedGoogle Scholar
- Franzetti B, Schoehn G, Garcia D, Ruigrok RW, Zaccai G (2002a) Characterization of the proteasome from the extremely halophilic archaeon Haloarcula marismortui. Archaea 1:53–61 ArticlePubMed CentralCASPubMedGoogle Scholar
- Franzetti B, Schoehn G, Hernandez JF, Jaquinod M, Ruigrok RW, Zaccai G (2002b) Tetrahedral aminopeptidase: a novel large protease complex from archaea. EMBO J 21:2132–2138 ArticlePubMed CentralCASPubMedGoogle Scholar
- Irimia A, Ebel C, Madern D, Richard SB, Cosenza LW, Zaccai G, Vellieux FM (2003) The Oligomeric states of Haloarcula marismortui malate dehydrogenase are modulated by solvent components as shown by crystallographic and biochemical studies. J Mol Biol 326:859–873 ArticleCASPubMedGoogle Scholar
- Jasnin M, Moulin M, Haertlein M, Zaccai G, Tehei M (2008) In vivo measurement of internal and global macromolecular motions in Escherichia coli. Biophys J 95:857–864 ArticlePubMed CentralCASPubMedGoogle Scholar
- Klumpp M, Baumeister W (1998) The thermosome: archetype of group II chaperonins. FEBS Lett 430:73–77 ArticleCASPubMedGoogle Scholar
- Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290 PubMed CentralCASPubMedGoogle Scholar
- Leuko S, Legat A, Fendrihan S, Stan-Lotter H (2004) Evaluation of the LIVE/DEAD BacLight kit for detection of extremophilic archaea and visualization of microorganisms in environmental hypersaline samples. Appl Environ Microbiol 70:6884–6886 ArticlePubMed CentralCASPubMedGoogle Scholar
- Leuko S, Raftery MJ, Burns BP, Walter MR, Neilan BA (2009) Global protein-level responses of Halobacterium salinarum NRC-1 to prolonged changes in external sodium chloride concentrations. J Proteome Res 8:2218–2225 ArticleCASPubMedGoogle Scholar
- Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98 ArticleCASPubMedGoogle Scholar
- Marty V, Jasnin M, Fabiani E, Vauclare P, Gabel F, Trapp M, Peters J, Zaccai G, Franzetti B (2013) Neutron scattering: a tool to detect in vivo thermal stress effects at the molecular dynamics level in micro-organisms. J R Soc Interface 10:20130003. doi:10.1098/rsif.2013.0003ArticlePubMed CentralPubMedGoogle Scholar
- Natali F, Peters J, Russo D, Barbieri S, Chiapponi C, Cupane A, Deriu A, Di Bari MT, Farhi E, Gerelli Y, Mariani P, Paciaroni A, Rivasseau C, Schiró G, Sonvico F (2013) IN13 Backscattering Spectrometer at ILL: looking for motions in biological macromolecules and organisms. Neutron News 19:14–18 Google Scholar
- Oesterhelt D, Stoeckenius W (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol 31:667–678 ArticleCASPubMedGoogle Scholar
- Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline systems 4:2. doi:10.1186/1746-1448-4-2ArticlePubMed CentralPubMedGoogle Scholar
- Oren A (2013) Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol Lett 342:1–9. doi:10.1111/1574-6968.12094ArticleCASPubMedGoogle Scholar
- Peters J, Kneller GR (2013) Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering. J Chem Phys 139:165102. doi:10.1063/1.4825199ArticlePubMedGoogle Scholar
- Stadler AM, Garvey CJ, Bocahut A, Sacquin-Mora S, Digel I, Schneider GJ, Natali F, Artmann GM, Zaccai G (2012) Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics. J R Soc Interface 9:2845–2855. doi:10.1098/rsif.2012.0364ArticlePubMed CentralCASPubMedGoogle Scholar
- Sträuber H, Müller S (2010) Viability states of bacteria–specific mechanisms of selected probes. Cytometry A 77:623–634. doi:10.1002/cyto.a.20920ArticlePubMedGoogle Scholar
- Tadeo X, López-Méndez B, Trigueros T, Laín A, Castaño D, Millet O (2009) Structural basis for the aminoacid composition of proteins from halophilic archea. PLoS Biol 7:e1000257 ArticlePubMed CentralPubMedGoogle Scholar
- Tehei M, Madern D, Pfister C, Zaccai G (2001) Fast dynamics of halophilic malate dehydrogenase and BSA measured by neutron scattering under various solvent conditions influencing protein stability. Proc Natl Acad Sci USA 98:14356–14361 ArticlePubMed CentralCASPubMedGoogle Scholar
- Tehei M, Franzetti B, Madern D, Ginzburg M, Ginzburg BZ, Giudici-Orticoni MT, Bruschi M, Zaccai G (2004) Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep 5:66–70 ArticlePubMed CentralCASPubMedGoogle Scholar
- Tehei M, Madern D, Franzetti B, Zaccai G (2005) Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature. J Biol Chem 280:40974–40979 ArticleCASPubMedGoogle Scholar
- Tehei M, Franzetti B, Wood K, Gabel F, Fabiani E, Jasnin M, Zamponi M, Oesterhelt D, Zaccai G, Ginzburg M, Ginzburg BZ (2007) Neutron scattering reveals extremely slow cell water in a Dead Sea organism. Proc Natl Acad Sci USA 104:766–771. doi:10.1073/pnas.0601639104ArticlePubMed CentralCASPubMedGoogle Scholar
- Zaccai G (2000) How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288:1604–1607 ArticleCASPubMedGoogle Scholar
- Zaccai G (2013) The ecology of protein dynamics. Curr Phys Chem 3:9–16 ArticleCASGoogle Scholar
Acknowledgments
This work was funded by a grant form the CNRS interdisciplinary program “Environnements Planétaire et Origine du Vivant” (EPOV). V. M. was supported by a PhD grant from the French Ministry for Research and Technology.
Author information
Authors and Affiliations
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, 38027, Grenoble, France Pierre Vauclare, Vincent Marty, Elisa Fabiani, Nicolas Martinez, Frank Gabel, Judith Peters, Giuseppe Zaccai & Bruno Franzetti
- CNRS, IBS, 38027, Grenoble, France Pierre Vauclare, Vincent Marty, Elisa Fabiani, Nicolas Martinez, Frank Gabel & Bruno Franzetti
- CEA, DSV, IBS, 38027, Grenoble, France Pierre Vauclare, Vincent Marty, Elisa Fabiani, Nicolas Martinez, Frank Gabel & Bruno Franzetti
- Institut Laue Langevin, B.P. 156X, 38042, Grenoble Cedex 9, France Elisa Fabiani, Nicolas Martinez, Marion Jasnin, Judith Peters & Giuseppe Zaccai
- Institut de Biologie Structurale, 71 avenue des Martyrs, CS 10090, 38044, Grenoble Cedex 9, France Bruno Franzetti
- Pierre Vauclare